

PII: S0040-4039(96)01584-5

γ-Syn-Selective Carbonyl Allylation by 1-Bromo-2-butene with Tin(II) Iodide and Tetrabutylammonium Bromide

Yoshiro Masuyama,* Masayuki Kishida, and Yasuhiko Kurusu

Department of Chemistry, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102, Japan

Abstract: (E)-rich 1-Bromo-2-butene preferentially caused γ -syn-allylation of aldehydes with tin(II) iodide and tetrabutylammonium bromide (or iodide) in THF-H₂O or 1,3-dimethyl-2-imidazolidinone-H₂O to produce 1-substituted syn-2-methyl-3-buten-1-ols. Copyright © 1996 Elsevier Science Ltd

Barbier-type carbonyl allylation by (E)- γ -substituted allylmetal reagents, derived from (E)- γ -substituted allylic halides with metals or metal halides, usually makes anti-diastereoselective addition at γ -position of the allylmetal reagents to aldehydes: γ -anti-selective carbonyl allylation. γ -Syn-selective carbonyl allylation by (E)- γ -substituted allylmetal reagents has only been attained by the addition of (E)- γ -substituted allylic trialkylsilanes and trialkylstannanes to aldehydes in the presence of Lewis acids. Allylic trichlorotin intermediates, derived from (E)- γ -substituted allylic alcohols and tin(II) chloride in the presence of a catalytic amount of PdCl₂(PhCN)₂, have caused highly controlled γ -anti-addition to aldehydes in polar solvents such as THF-H₂O and 1,3-dimethyl-2-imidazolidinone. (E)-rich 1-Bromo-2-butene has been applied to either α - or γ -regiocontrolled carbonyl allylation with tin(II) bromide, in which γ -anti-selectivity is lower than that with tin(II) chloride. We thus hoped that halogens in γ -substituted allylic tin intermediates, prepared from γ -substituted allylic halides and tin(II) halides, could influence diastereoselection in the γ -regioselective carbonyl allylation. We here report the *first Barbier-type* γ -syn-selective carbonyl allylation by (E)-rich 1-bromo-2-butene with tin(II) iodide and tetrabutylammonium bromide (or iodide).

$$X + RCHO$$

$$\frac{SnX'_{2}, TBAX''}{H_{2}O}$$

$$f. t.$$

$$3 syn$$

$$3 anti$$

Diastereoselection in the γ -regioselective allylation of benzaldehyde by (E)-rich 1-halo-2-butene $(1)^6$ was investigated with tin(II) halides (SnX_2) and tetrabutylammonium halides $(TBAX^*)^{3.7}$ in polar solvents such as THF, DMF and 1, 3-dimethyl-2-imidazolidinone (DMI) (eq. 1). The results are summarized in Table 1. The carbonyl allylation using (E)-1-chloro-2-butene (1; X=Cl) and $SnCl_2$ occurred neither with nor without TBACl (entry 1). The carbonyl allylation by (E)-rich 1-bromo-2-butene (1; X=Br) with SnI_2 proceeded with syn-selectivity (entry 6). The same allylation proceeded with anti-selectivity in the case of $SnCl_2$ (entry 2).

entry	X	Χ'	Χ"	solvent	time (h)	3 (R=Ph)	
						yield (%) ^b	syn:anti ^c
1	Cl	Cl	Cl	THF	24	N. R.	
2	Br	Cl	^d	THF	24	63	16:84
3	Br	Cl	Br	THF	24	58	52 : 48
4	Br	Br	^d	THF	22	75	42 : 58
5	Br	Br	Br	THF	22	68	77 : 23
6	Br	I	^d	THF	15	55	73:27
7	Br	I	Br	THF	15	78	84:16
8	Br	Ĭ	Br	THF℃	24	52	51 : 49
9	Br	I	Br	DMF	17	72	84 : 16
10	Br	i	Br	DMI	17	90	81 : 19
11	\mathbf{I}^{f}	1	I	DMI	17	88	87:13

Table 1 Allylation of Benzaldehyde by 1 with Tin(II) Halides^a

'The allylation of benzaldehyde (1 mmol) by 1 (1.5 mmol) was carried out with SnX'₂ (1.5 mmol) and TBAX" (1.5 mmol) at room temperature in solvent (3 ml)-H₂O (0.1 ml). 1 Solated yields. The ratio was determined by 1 H NMR (JEOL GX-270) and by GC (capillary column PEG 20M, 0.25 mm \times 30 m). See ref. 12. 4 The reaction was carried out without TBAX". The reaction was carried out without H₂O. 1 1-lodo-2-butene, derived from 1-chloro-2-butene and NaI at 50 $^{\circ}$ C in DMI, was used in situ.

Addition of TBABr enhanced the syn-selectivity in the allylation with any SnX'₂ (entries 2-7).¹⁰ Addition of a bit of water enhanced both the yield and the syn-selectivity (entries 7 and 8).11 DMI is a superior solvent to THF with regard to yields of 3 (entries 7 and 10). The use of all iodides, namely 1-iodo-2-butene (1, X=I), SnI₂, and TBAI, slightly enhanced the syn-selectivity in DMI (entries 10 and 11).

γ-Syn-selective allylations of various aldehydes were investigated with (E)-rich 1 (X=Br), SnI₂, and TBAX" at room temperature in THF-H₂O or DMl-H₂O, as shown in Table 2. Any aldehyde, such as aromatic aldehydes bearing either an electron-donating group or an electron-withdrawing group, aliphatic aldehydes, and α, β-unsaturated aldehydes, can be used to the syn-selective allylation. Use of TBAI instead of TBABr slightly enhanced both the yield and the syn-selectivity (entries 6 and 7).

This work was supported by Grant-in-Aid for Scientific Research No. 08640759 from the Ministry of Education, Science, and Culture, Japan.

REFERENCES AND NOTES

- For a review, see: Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207-2293.
- (a) Masuyama, Y. J. Synth. Org. Chem., Jpn. 1992, 50, 202-212; (b) Masuyama, Y. In Advances in 2. Metal-Organic Chemistry; Liebeskind, L. S., Ed.; JAI Press: Greenwich, 1994; Vol. 3, pp. 255-303.

entry	Ŕ	solvent	time (h)	3, yield (%)b	syn : anti ^c
1	4-MeOC ₆ H ₄	THF	64	69	85 : 15
2	4-CIC ₆ H ₄	THF	18	65	84 : 16
3	4-MeOOCC ₆ H ₄	THF	24	57	85 : 15
4	4-NCC ₆ H ₄	THF	19	73	87:13
5	n-C ₆ H ₁₃	THF	17	49	74 : 26
6	n-C ₆ H ₁₃	DMI	24	74	67 : 33
7 ^d	$n-C_6H_{13}$	DMI	24	84	73 : 27
8	$H_2C=CH(CH_2)_8$	THF	19	58	86 : 14
9	(E) - C_6 H ₅ CH=CH	THF	16	52	84 : 16
10	(E) - C_6 H ₅ CH=CH	DMI	16	73	83 : 17

Table 2 γ-Syn-Selective Carbonyl Allylation by 1 (X=Br) with SnI₂ and TBABr^a

"The allylation of aldehydes (2, 1 mmol) by 1 (X=Br, 1.5 mmol) was carried out with SnI₂ (1.5 mmol) and TBABr (1.5 mmol) at room temperature in solvent (3 ml)- H_2O (0.1 ml). bIsolated yields. "The ratio was determined by H NMR (JEOL GX-270) and by GC (capillary column PEG 20M, 0.25 mm × 30 m). See ref. 12. dTBAI was used instead of TBABr.

- 3. Masuyama, Y.; Kishida, M.; Kurusu, Y. J. Chem. Soc., Chem. Commun. 1995, 1405-1406.
- 4. For carbonyl allylation by allylic bromides with tin(II) chloride or bromide, see: (a) Gambaro, A.; Peruzzo, V.; Plazzogna, G.; Tagliavini, G. J. Organomet. Chem. 1980, 197, 45-50; (b) Mukaiyama, T.; Harada, T.; Shoda, S. Chem. Lett. 1980, 1507-1510.
- For carbonyl allylation by allylic bromides with tin, see: (a) Mukaiyama, T.; Harada, T. Chem. Lett.
 1981, 1527-1528; (b) Nokami, J.; Otera, J.; Sudo, T.; Okawara, R. Organometallics 1983, 2, 191-193.
- 6. 1-Bromo-2-butene (1; X=Br, E:Z=85:15), which has been purchased from Tokyo Chemical Industry Co., Ltd., contains 14% 3-bromo-1-butene [(E)-1:(Z)-1:3-bromo-1-butene=ca.73:13:14]. (E)-1-Chloro-2-butene (1; X=Cl) was also purchased from Tokyo Chemical Industry Co., Ltd.
- 7. Masuyama, Y.; Nakata, J.; Kurusu, Y. J. Chem. Soc., Perkin Trans. 1 1991, 2598-2599.
- 8. A typical procedure of γ-syn-selective carbonyl allylation by 1-bromo-2-butene with tin(II) iodide and TBABr is as follows: To a solution of tin(II) iodide (0.56 g, 1.5 mmol) and TBABr (0.48 g, 1.5 mmol) in THF (3 ml) and water (0.1 ml) were added benzaldehyde (2; R=C₆H₅, 0.11 g, 1 mmol) and 1-bromo-2-butene (1; X=Br, 0.20 g, 1.5 mmol). The solution was vigorously stirred at room temperature for 15 h under a nitrogen atmosphere. The reaction mixture was poured into water (30 ml) and extracted with ether-dichloromethane (2/1, 100 ml). The extract was washed first with water and then with brine, and was dried over MgSO₄. Evaporation of solvents and purification by preparative TLC (Harrison

- centrifugal thin-layer chromatotron; Merck Kiesel-gel 60 PF₂₅₄ Art. 7749; hexane:ethyl acetate=10:1) and/or HPLC (Japan Analytical Industry Co., Ltd. LC-908; JAIGEL-2H; chloroform) afforded 2-methyl-1-phenyl-3-buten-1-ol (3; $R=C_6H_5$, 0.13 g, 78 %, syn:anti=84:16) as a colorless oil.
- 9. In the palladium-catalyzed allylation of benzaldehyde by (*E*)-2-buten-1-ol with tin(II) halides at room temperature in DMI, tin(II) bromide has lowered the yield (3; R=C₆H₅, 115 h, 22%, syn:anti=40:60) and tin(II) iodide has not functioned. Thus, allylic alcohols are probably impractical in the carbonyl allylation with tin(II) bromide or iodide.
- 10. The anti-selection in the use of SnCl₂ suggests a usual six-membered cyclic transition state **B** between (*E*)-2-butenyltin and aldehyde, that is, Lewis acidity of tin in 2-butenylbromodichlorotin (eq 2). On the other hand, the syn-selection in the use of SnI₂ does not suggest a six-membered cyclic transition state but rather an acyclic antiperiplanar transition state **A**, because no (*Z*)-2-butenyltin intermediate has been prepared from (*E*)-rich 1-bromo-2-butene (eq 2). That is to say, weak Lewis acidity of tin in 2-butenylbromodiiodotin, which is based on low electronegativity of iodine, is probably unable to promote the allylation via the six-membered cyclic transition state. The enhancement of the syn-selection by the addition of TBABr can be explained by no Lewis acidity of the tin in pentacoordinate 2-butenyldibromodiiodostannate.

Br

$$H_{2}BrSn$$
 $H_{3}CHH$
 $H_{3}CHH$

- 11. Tin(IV) compounds, prepared in the initial stage by the hydrolysis of products, 2-methyl-3-butenyloxybromodiodotins or 2-methyl-3-butenyloxydibromodiodostannate, may function as Lewis acids in the reaction of 2-butenylbromodiodotin or 2-butenyldibromodiodostannate, which is hard to form six-membered cyclic transition states.
- 12. Takahara, J. P.; Masuyama, Y.; Kurusu, Y. J. Am. Chem. Soc. 1992, 114, 2577-2586.
- 13. Pentacoordination of aromatic diolate or fluoride to silicon or tin of allylic silanes and tins usually promotes carbonyl allylations to lead to γ-anti-selection via six-membered cyclic transition states: (a) Sakurai, H. *Synlett* 1989, 1-8; (b) Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. D. *J. Org. Chem.* 1994, 59, 6161-6163, and references cited therein.